25,677 research outputs found

    A biogenic amine and a neuropeptide act identically: tyramine signals through calcium in drosophila tubule stellate cells

    Get PDF
    Insect osmoregulation is subject to highly sophisticated endocrine control. In Drosophila, both Drosophila kinin and tyramine act on the Malpighian (renal) tubule stellate cell to activate chloride shunt conductance, and so increase the fluid production rate. Drosophila kinin is known to act through intracellular calcium, but the mode of action of tyramine is not known. Here, we used a transgenically encoded GFP::apoaequorin translational fusion, targeted to either principal or stellate cells under GAL4/UAS control, to demonstrate that tyramine indeed acts to raise calcium in stellate, but not principal cells. Furthermore, the EC(50) tyramine concentration for half-maximal activation of the intracellular calcium signal is the same as that calculated from previously published data on tyramine-induced increase in chloride flux. In addition, tyramine signalling to calcium is markedly reduced in mutants of NorpA (a phospholipase C) and itpr, the inositol trisphosphate receptor gene, which we have previously shown to be necessary for Drosophila kinin signalling. Therefore, tyramine and Drosophila kinin signals converge on phospholipase C, and thence on intracellular calcium; and both act to increase chloride shunt conductance by signalling through itpr. To test this model, we co-applied tyramine and Drosophila kinin, and showed that the calcium signals were neither additive nor synergistic. The two signalling pathways thus represent parallel, independent mechanisms for distinct tissues (nervous and epithelial) to control the same aspect of renal function

    Discussion on Quaternary sea-level change on the continental shelf of Hong Kong

    Get PDF
    Yim et al comment on Fyfe et al's sequence stratigraphical interpretation of the Quaternary inner shelf sediments of Hong Kong. Fyfe et al respond to the comments.published_or_final_versio

    Hepatic fibrogenesis requires sympathetic neurotransmitters

    Get PDF
    Background and aims: Hepatic stellate cells (HSC) are activated by liver injury to become proliferative fibrogenic myofibroblasts. This process may be regulated by the sympathetic nervous system (SNS) but the mechanisms involved are unclear. Methods: We studied cultured HSC and intact mice with liver injury to test the hypothesis that HSC respond to and produce SNS neurotransmitters to promote fibrogenesis. Results: HSC expressed adrenoceptors, catecholamine biosynthetic enzymes, released norepinephrine (NE), and were growth inhibited by α- and β-adrenoceptor antagonists. HSC from dopamine β-hydroxylase deficient (Dbh(−/−)) mice, which cannot make NE, grew poorly in culture and were rescued by NE. Inhibitor studies demonstrated that this effect was mediated via G protein coupled adrenoceptors, mitogen activated kinases, and phosphatidylinositol 3-kinase. Injury related fibrogenic responses were inhibited in Dbh(−/−) mice, as evidenced by reduced hepatic accumulation of α-smooth muscle actin(+ve) HSC and decreased induction of transforming growth factor β1 (TGF-β1) and collagen. Treatment with isoprenaline rescued HSC activation. HSC were also reduced in leptin deficient ob/ob mice which have reduced NE levels and are resistant to hepatic fibrosis. Treating ob/ob mice with NE induced HSC proliferation, upregulated hepatic TGF-β1 and collagen, and increased liver fibrosis. Conclusions: HSC are hepatic neuroglia that produce and respond to SNS neurotransmitters to promote hepatic fibrosis

    Flow diagram of the metal-insulator transition in two dimensions

    Full text link
    The discovery of the metal-insulator transition (MIT) in two-dimensional (2D) electron systems challenged the veracity of one of the most influential conjectures in the physics of disordered electrons, which states that `in two dimensions, there is no true metallic behaviour'; no matter how weak the disorder, electrons would be trapped and unable to conduct a current. However, that theory did not account for interactions between the electrons. Here we investigate the interplay between the electron-electron interactions and disorder near the MIT using simultaneous measurements of electrical resistivity and magnetoconductance. We show that both the resistance and interaction amplitude exhibit a fan-like spread as the MIT is crossed. From these data we construct a resistance-interaction flow diagram of the MIT that clearly reveals a quantum critical point, as predicted by the two-parameter scaling theory (Punnoose and Finkel'stein, Science 310, 289 (2005)). The metallic side of this diagram is accurately described by the renormalization group theory without any fitting parameters. In particular, the metallic temperature dependence of the resistance sets in when the interaction amplitude reaches gamma_2 = 0.45 - a value in remarkable agreement with the one predicted by the theory.Comment: as publishe

    Temperature dependent optical properties of CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3</inf> perovskite by spectroscopic ellipsometry

    Full text link
    © 2016 AIP Publishing LLC. Mixed organic-inorganic halide perovskites have emerged as a promising new class of semiconductors for photovoltaics with excellent light harvesting properties. Thorough understanding of the optical properties of these materials is important for photovoltaic device optimization and the insight this provides for the knowledge of energy band structures. Here we present an investigation of the sub-room temperature dependent optical properties of polycrystalline thin films of CH3NH3PbI3 perovskites that are of increasing interest for photovoltaics. The complex dielectric function of CH3NH3PbI3 in the energy range of 0.5-4.1 eV is determined between 77 K and 297 K using spectroscopic ellipsometry. An increase in optical permittivity as the temperature decreases is illustrated for CH3NH3PbI3. Optical transitions and critical points were analyzed using the energy dependent second derivative of these dielectric functions as a function of temperature

    Antarctic intermediate water circulation in the South Atlantic over the past 25,000years

    Get PDF
    Antarctic Intermediate Water is an essential limb of the Atlantic meridional overturning circulation that redistributes heat and nutrients within the Atlantic Ocean. Existing reconstructions have yielded conflicting results on the history of Antarctic Intermediate Water penetration into the Atlantic across the most recent glacial termination. In this study we present leachate, foraminiferal, and detrital neodymium isotope data from three intermediate-depth cores collected from the southern Brazil margin in the South Atlantic covering the past 25kyr. These results reveal that strong chemical leaching following decarbonation does not extract past seawater neodymium composition in this location. The new foraminiferal records reveal no changes in seawater Nd isotopes during abrupt Northern Hemisphere cold events at these sites. We therefore conclude that there is no evidence for greater incursion of Antarctic Intermediate Water into the South Atlantic during either the Younger Dryas or Heinrich Stadial 1. We do, however, observe more radiogenic Nd isotope values in the intermediate-depth South Atlantic during the mid-Holocene. This radiogenic excursion coincides with evidence for a southward shift in the Southern Hemisphere westerlies that may have resulted in a greater entrainment of radiogenic Pacific-sourced water during intermediate water production in the Atlantic sector of the Southern Ocean. Our intermediate-depth records show similar values to a deglacial foraminiferal Nd isotope record from the deep South Atlantic during the Younger Dryas but are clearly distinct during the Last Glacial Maximum and Heinrich Stadial 1, demonstrating that the South Atlantic remained chemically stratified during Heinrich Stadial 1.Natural Environment Research Council (Grant IDs: NE/K005235/1, NE/F006047/1), National Science Foundation (Grant ID: OCE -1335191), Rutherford Memorial Scholarship, DFG Research Center/Cluster of Excellence “The Ocean in the Earth System”, FAPESP (Grant ID: 2012/17517-3), CAPES (Grant IDs: 1976/2014, 564/2015

    The role of cardiac troponin T quantity and function in cardiac development and dilated cardiomyopathy

    Get PDF
    Background: Hypertrophic (HCM) and dilated (DCM) cardiomyopathies results from sarcomeric protein mutations, including cardiac troponin T (cTnT, TNNT2). We determined whether TNNT2 mutations cause cardiomyopathies by altering cTnT function or quantity; whether the severity of DCM is related to the ratio of mutant to wildtype cTnT; whether Ca2+ desensitization occurs in DCM; and whether absence of cTnT impairs early embryonic cardiogenesis. Methods and Findings: We ablated Tnnt2 to produce heterozygous Tnnt2+/ mice, and crossbreeding produced homozygous null Tnnt2-/-embryos. We also generated transgenic mice overexpressing wildtype (TGWT) or DCM mutant (TGK210Δ) Tnnt2. Crossbreeding produced mice lacking one allele of Tnnt2, but carrying wildtype (Tnnt2+/-/TGWT) or mutant (Tnnt2+/-/TGK210Δ) transgenes. Tnnt2+/-mice relative to wildtype had significantly reduced transcript (0.82 ± 0.06 [SD] vs. 1.00 ± 0.12 arbitrary units; p = 0.025), but not protein (1.01 ± 0.20 vs. 1.00 ± 0.13 arbitrary units; p = 0.44). Tnnt2+/-mice had normal hearts (histology, mass, left ventricular end diastolic diameter [LVEDD], fractional shortening [FS]). Moreover, whereas Tnnt2+/-/ TGK210Δ mice had severe DCM, TGK210Δ mice had only mild DCM (FS 18 ± 4 vs. 29 ± 7%; p < 0.01). The difference in severity of DCM may be attributable to a greater ratio of mutant to wildtype Tnnt2 transcript in Tnnt2+/-/TGK210Δ relative to TGK210Δ mice (2.42±0.08, p = 0.03). Tnnt2+/-/TGK210Δ muscle showed Ca2+ desensitization (pCa50 = 5.34 ± 0.08 vs. 5.58 ± 0.03 at sarcomere length 1.9 μm. p<0.01), but no difference in maximum force generation. Day 9.5 Tnnt2-/-embryos had normally looped hearts, but thin ventricular walls, large pericardial effusions, noncontractile hearts, and severely disorganized sarcomeres. Conclusions: Absence of one Tnnt2 allele leads to a mild deficit in transcript but not protein, leading to a normal cardiac phenotype. DCM results from abnormal function of a mutant protein, which is associated with myocyte Ca2+ desensitization. The severity of DCM depends on the ratio of mutant to wildtype Tnnt2 transcript. cTnT is essential for sarcomere formation, but normal embryonic heart looping occurs without contractile activity. © 2008 Ahmad et al

    Electronic measurement and control of spin transport in Silicon

    Full text link
    The electron spin lifetime and diffusion length are transport parameters that define the scale of coherence in spintronic devices and circuits. Since these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. Thus far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon (Si), which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and diffusion length due to low spin-orbit scattering and lattice inversion symmetry. Despite its exciting promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of universal impedance mismatch obstacles, and are obscured by Lorentz magnetoresistance and Hall effects. Here we demonstrate conduction band spin transport across 10 microns undoped Si, by using spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin-injection and detection. Not based on magnetoresistance, the hot electron spin-injection and detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current thus shows independent magnetic and electrical control of spin precession and confirms spin coherent drift in the conduction band of silicon.Comment: Single PDF file with 4 Figure

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone
    corecore